AI/ML

Deploy StarCoder on Your Local Machine with Docker & Hugging Face

starcoder-image
Starcoder Model for your Business?
  • check icon

    Cost Efficiency (Open Source)

  • check icon

    Lower Long Term costs

  • check icon

    Customised data control

  • check icon

    Pre-trained model

Read More

Get Your Starcoder AI Model Running in a Day


Free Installation Guide - Step by Step Instructions Inside!

Introduction

StarCoder is a high performance AI model optimized for code generation. To run it on a local server, we will use Docker to ensure a stable and isolated environment and Hugging Face Transformers to download and execute the model.

System Requirements

Before starting, ensure your local server meets the following:

  • Ubuntu 20.04+ or Debian-based OS
  • Docker installed (if not, install it using the steps below)
  • At least 16GB RAM for smooth model execution

Step 1: Install Docker (If Not Already Installed)

To set up Docker on your local server run

sudo apt update && sudo apt upgrade -ysudo apt install docker.io -ysudo systemctl start dockersudo systemctl enable docker

Verify the installation:

docker --version 

Step 2: Set Up a Docker Container for StarCoder

Create a container with Python and necessary libraries:

docker run -it --name starcoder-container --rm -p 8000:8000 python:3.9 bash

Inside the container, install dependencies:

pip install torch transformers flask

Step 3: Download StarCoder from Hugging Face

Now, download the StarCoder model:

from transformers import AutoModelForCausalLM, AutoTokenizertokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder")

 

This fetches the model and tokenizer from Hugging Face.

Step 4: Running the Model as a Local API

Create a simple Flask server to expose StarCoder’s API:

from flask import Flask, request, jsonify

 def generate_code(prompt): inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, max_length=200) return tokenizer.decode(output[0])app = Flask(__name__)@app.route("/generate", methods=["POST"])def generate(): data = request.json response = generate_code(data["prompt"]) return jsonify({"response": response})if __name__ == "__main__": app.run(host="0.0.0.0", port=8000)

 

Save this as server.py inside the container.

Step 5: Running the API Server

Inside the Docker container, start the server:

python server.py

 

Your StarCoder API is now live at:

http://localhost:8000/generate

You can send a POST request with a prompt:

{ "prompt": "def fibonacci(n):"}

 

Summary: Can You Run StarCoder?

With this setup, you have StarCoder running in a Docker container on a local server, accessible via an API. This approach ensures flexibility and easy deployment for local AI based coding assistance.

 

Ready to transform your business with our technology solutions? Contact Us  today to Leverage Our AI/ML Expertise. 

0

AI/ML

Related Center Of Excellence